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ABSTRACT  

Optical phased arrays (OPAs) with fast response time are of great interest for various applications such as displays, free 
space optical communications, and lidar. Existing liquid crystal OPAs have millisecond response time and small beam 
steering angle. Here, we report on a novel 32×32 MEMS OPA with fast response time (<4 microseconds), large field of 
view (±2°), and narrow beam divergence (0.1°). The OPA is composed of high-contrast grating (HCG) mirrors which 
function as phase shifters. Relative to beam steering systems based on a single rotating MEMS mirror, which are 
typically limited to bandwidths below 50 kHz, the MEMS OPA described here has the advantage of greatly reduced 
mass and therefore achieves a bandwidth over 500 kHz. The OPA is fabricated using deep UV lithography to create 
submicron mechanical springs and electrical interconnects, enabling a high (85%) fill-factor. Each HCG mirror is 
composed of only a single layer of polysilicon and achieves >99% reflectivity through the use of a subwavelength 
grating patterned into the mirror’s polysilicon surface. Conventional metal-coated MEMS mirrors must be thick (1-
50 m) to prevent warpage arising from thermal and residual stress. The single material construction used here results in 
a high degree of flatness even in a thin 400 nm HCG mirror. Beam steering is demonstrated using binary phase patterns 
and is accomplished with the help of a closed-loop phase control system based on a phase-shifting interferometer that 
provides in-situ measurement of the phase shift of each mirror in the array.  
Keywords: optical phased arrays, beam steering, micro electromechanical systems, high contrast gratings.  
 

1. INTRODUCTION  

Optical phased arrays (OPAs)1, 2 are versatile beam steering devices suitable for a variety of applications including 
LIDAR, free-space optical communication, 3D holographic displays, and high-resolution 3D imaging.3, 4 An OPA 
consists of a two-dimensional (2D) array of phase shifters which impose a desired phase profile on an incoming beam of 
light. Unlike mirror-based beam steering systems, an OPA can be programmed to generate multiple, simultaneously-
scanning beams in the OPA’s field of view, allowing precise pointing and tracking of multiple targets. OPA’s also offer 
fast random-access pointing and dynamic focusing/defocusing capabilities. An OPA is usually much faster than a single 
steering mirror as individual phase shifters are much smaller and more nimble than a large scanning mirror.  

The dominant OPA technology is based on liquid crystal phase shifters, which have been studied extensively since their 
initial demonstration using liquid crystal television panels.5, 6 However, liquid crystals have limited operating speed 
because it takes tens of milliseconds for an electric field to reorient the molecules of the liquid crystal. Liquid crystals 
also suffer from the disadvantage that, as a continuous medium, sharp phase transitions (e.g. in the region where the 
phase pattern wraps from 2 to 0 radians) are not properly expressed. In addition, liquid crystal materials tend to be 
highly temperature sensitive, necessitating active temperature regulation in many applications.  

More recently, micro-electromechanical systems (MEMS) have been used to produce OPAs.7, 8 A typical MEMS-based 
phase shifter is realized by a “piston” mirror which is displaced to provide the desired phase shift. Conventional MEMS 
mirrors are made of metal-coated single-crystal or polycrystalline silicon, or multi-layer distributed Bragg reflectors 
(DBRs). Though faster than bulk mirrors, the mass of such multi-layer mirrors still limits the operating speed of MEMS-
based OPAs. Moreover, thin-film mirrors composed of dissimilar materials suffer from temperature sensitivity due to 
differences in the coefficient of thermal expansion (CTE) of the various layers. This CTE mismatch often causes mirrors 
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